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Two main points of this presenta0on 

•  To propose a more suitable choice of norm than the 
typical total energy‐based norm. 

•  To suggest that an alterna0ve simple methodology 
can be used to assess the impact of observa0ons 
without need for the linear assump0on and the 
prac0cal complexi0es it introduces: need of adjoint, 
restricted applicability. 
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given observations at time tk−m+1; and dk−m+1|k−m ≡ yo
k−m+1 − hk−m+1(xb

k−m+1|k−m) is the

pk−m+1-dimensional residual vector representing the difference between the actual observa-

tions and the model-derived observations. The analysis expression (3) is representative of

an incremental three-dimensional variational formulation found elsewhere; it is written here

for an analysis valid at time tk−m+1 rather than at the usual time tk; taking (k−m+1)→ k

converts it into its familiar form.

Studies of observation impact on the forecast introduce a scalar functional to measure

the quality of the forecast and establish a common means to evaluate the observations. The

scalar measure can be written as

ek|! ≡ (xf
k|! − xt

k)
TTk(x

f
k|! − xt

k) , (4)

where the n × n symmetric positive semi-definite matrix Tk stands for the weight given to

the forecast error εf
k|! ≡ xf

k|! − xt
k, evaluated at time tk, for ! <k . In practice, one cannot

calculate the weighted forecast error in (4) since it involves the unknown true state xt
k.

Instead, a verification state xv
k is used, so that the forecast error becomes εf,v

k|! ≡ xf
k|! − xv

k,

and the scalar measure (4) is replaced with

ev
k|! ≡ (xf

k|! − xv
k)

TTk(x
f
k|! − xv

k) . (5)

Naturally, the verification state is usually taken to be an analysis.

The impact of observations on the forecast can be evaluated by studying how the forecast

error measure (5) changes with respect to changes in the initial condition in (1), at time

tk−m+1, with ! = k−m+1 and m > 1. The change in the initial condition can be thought of

as the change incurred due to the assimilation of observations. Assuming these changes are
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tk‐m   

Se[ng up nota0on 

not necessarily optimal, n× pk−m+1 matrix of weights used to update the background state
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b. A simple alternative forecast error measure

The natural observation-space quantity to consider for this task are the observation-

minus-forecast residuals. Defining a measure of forecast error change based on the residuals

is appealing for various reasons. One relates to the insight following from estimation theory

that OMF residuals carry valuable information that can be used to assess the quality of

estimates. Another relates to practicality, as it is straightforward to calculate OMF residu-

als. Furthermore, OMF residuals can be calculated for any length of forecast time and an

approach based on these residuals is not to be limited by the validity of linearization of the

forecasting model.

We use as the forecast error measure a weighted square difference between the model-

predicted observations hk(x
f
k|!) and the observation vector yo

k, at time tk, for ! < k. The

OMF residual-based forecast error ey
k|! is thus defined at time tk to be

ey
k|! ≡

[
hk(x

f
k|!)− yo

k

]T

Ck

[
hk(x

f
k|!)− yo

k

]

= dT
k|!Ckdk|! , (12)

where Ck is a pk × pk positive semi-definite suitable weighting matrix. In this case, the

forecast error is calculated for a forecast started at time t! < tk. The first equality above

is written using the negative of the residual vector simply to emphasize the analogy of this

error expression with those in (4) and (5), suggesting that now the verification is based on

the observations.

To study the impact of observations on the forecast, we consider again the forecast error
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True state‐space error: 

Perceived state‐space:  

Observa0on‐space residual:  

Three error measures considered here: 



2. Measures of observation impact

a. Background

Let us write the expression describing a model forecast as

xf
k|k−m+1 = mk,k−m+1(x

a
k−m+1|k−m+1) , (1)

where here, borrowing from the notation of estimation theory (e.g., see Cohn et al. 1994),

the n-vector forecast state xf
k|k−m+1, at time tk, is derived by integration of the model m,

from time tk−m+1 to time tk, starting from an analysis state xa
k−m+1|k−m+1 calculated at time

tk−m+1. The subscript notation i|j indicates that the estimate at time ti was obtained by

using observations up to and including observations at time tj, for j ≤ i. In the linear

case, this notation indicates the estimates to be the conditional mean (e.g., Cohn 1997),

i.e., conditioned on observations up to a certain time. Here, the nonlinear case is under

consideration and the notation has no such probabilistic sense.

In data assimilation, the analysis is an estimate that combines a model background field,

xb
k−m+1|k−m ≡ xf

k−m+1|k−m = mk−m+1,k−m(xa
k−m|k−m) , (2)

with observations yo
k−m+1, valid at time tk−m+1, and for convenience will take the form

xa
k−m+1|k−m+1 = xb

k−m+1|k−m + K̃k−m+1|k−m[yo
k−m+1 − hk−m+1(x

b
k−m+1|k−m)] , (3)

where yo
k−m+1 is the pk−m+1-vector of observations at time tk−m+1; hk−m+1 is the pk−m+1 ob-

servation operator that transforms model states into observables: K̃k−m+1|k−m is a general,
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not necessarily optimal, n× pk−m+1 matrix of weights used to update the background state
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error measure (5) changes with respect to changes in the initial condition in (1), at time

tk−m+1, with ! = k−m+1 and m > 1. The change in the initial condition can be thought of
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Forecast model: 

Subop0mal analysis update: 

OMB residual vector: 

forecast error measure. Relevant to the present work are the following first- and second-order

accurate formulae:

δev,1
k = dT

k−m+1|k−mKT
k−m+1∇xbev

k|k−m , (6a)

δev,2
k =

1

2
dT

k−m+1|k−mKT
k−m+1

[
∇xbev

k|k−m +∇xaev
k|k−m+1

]
, (6b)

with

∇xgev
k|! = 2Mg;k,k−m+1Tk[x

f
k|! − xv

k] , (7a)

for " = k−m + 1 and " = k−m depending whether the error (5) is evaluated for a forecast

started from a background or an analysis, respectively. The n× n matrix

Mg;k,k−m+1 =
∂mk,k−m+1(x)

∂x

∣∣∣∣
x=xg

, (8)

represents the Jacobian of the model m in (1) integrated from time tk−m+1 to tk, and lin-

earized about integrations started from either the background xg = m(xb
k−m+1|k−m) or the

analysis xg = m(xa
k−m+1|k−m+1), respectively.

One can think of a change δev
k in the forecast error measure (5) as simply the difference

between the calculated measures between two forecasts issued from two consecutive analyzes,

δev
k ≡ ev

k|k−m+1 − ev
k|k−m . (9)

Substituting (3) into (1), assuming the analysis increment is small, and truncating a Taylor

series expansion to first-order leads to

xf
k|k−m+1 ≈mk,k−m+1(x

b
k−m+1|k−m) + Mb;k,k−m+1Kk−m+1dk−m+1|k−m . (10)

9

State‐space forecast error reduc0on: 

 The sub‐op0mality of the analysis update accommodates the weakly non‐linear case 

 Here, we’ll be talking about the 1‐day forecast error and corresponding error reduc0on 

Remarks: 

Observa0on‐space forecast error reduc0on: 

difference between two consecutive forecasts, started at tk−m and tk−m+1, to construct the

error-change quantity

δey
k ≡ ey

k|k−m+1 − ey
k|k−m . (13)

The impact, or error-change, δey
k is a scalar obtained from the summation over the contri-

butions of all individual observations and can be broken down into individual contributions,

just as the error-changes in (6). The difference between (6) and (13) being that the latter is

not an approximation obtained to allow for the calculation of individual observation impacts.

A relationship between the error-changes (6) and (13) can easily be established. If one

expands the forecast error vectors in (12) following similar arguments to those used to derive

(11), the OMF residual-based forecast error-change (13) can be approximated to first-order

as

δey
k ≈ δey,1

k = −2dT
k−m+1|k−mK̃T

k−m+1|k−mMT
b;k,k−m+1H

T
k|k−mCkdk|k−m , (14)

where, in the last expression, δxk−m+1|k−m = K̃k−m+1|k−mdk−m+1|k−m is the analysis incre-

ment at time tk−m+1, and Hk|k−m is the pk × n Jacobian matrix

Hk|k−m =
∂hk(x)

∂x

∣∣∣∣
x=xb

, (15)

of the nonlinear observation operator hk linearized about the background state xb
k−m+1|k−m.

Higher-order expression can be derived following the procedures in E7 or DT9. This ap-

proximation above is analogous to (6a) except that now the gradient vector ∇xbev
k|k−m =

2Tkε
f,v
k|k−m is replaced with the gradient vector ∇xbey

k|k−m = −2HT
k|k−mCkdk|k−m.
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… Se[ng up nota0on … 
tk‐m+1    tk tk‐m   



Ques,on 1:  How does the forecast error change with a change of ini0al condi0on?  

Answer to Q1:  Treat change of ini0al condi0on as infinitesimal and derive approximate  
                            formulae expressing the change in forecast error to various orders of 
                            accuracy. For example, a first‐order expression involves:  

Answer to Q2:  Similarly to addressing Q1, treat change of ini0al condi0on as infinitesimal  
                            and derive approximate formulae expressing the change in forecast error 
                            to various orders of accuracy. For example, first and second order  
                            approxima0ons give:  

Ques,on 2: How does the forecast error change when the ini0al condi0on changes  
                      as a consequence of assimila0ng observa0ons?  

as the change incurred due to the assimilation of observations. Assuming these changes are

infinitesimal, E7 and DT9 derive various approximations to the corresponding change in the

forecast error measure. Relevant to the present work are the following first- and second-order

accurate formulae:

δev,1
k = dT

k−m+1|k−mK̃T
k−m+1|k−m∇xbev

k|k−m , (6a)

δev,2
k =

1

2
dT

k−m+1|k−mK̃T
k−m+1|k−m

[
∇xbev

k|k−m +∇xaev
k|k−m+1

]
, (6b)

with

∇xgev
k|! = 2Mg;k,k−m+1Tk[x

f
k|! − xv

k] , (7a)

for " = k−m + 1 and " = k−m depending whether the error (5) is evaluated for a forecast

started from a background or an analysis, respectively. The n× n matrix

Mg;k,k−m+1 =
∂mk,k−m+1(x)

∂x

∣∣∣∣
x=xg

, (8)

represents the Jacobian of the model m in (1) integrated from time tk−m+1 to tk, and lin-

earized about integrations started from either the background xg = m(xb
k−m+1|k−m) or the

analysis xg = m(xa
k−m+1|k−m+1), respectively. Expression (6b) first appeared in LB4.

One can think of a change δev
k in the forecast error measure (5) as simply the difference

between the calculated measures between two forecasts issued from two consecutive analyzes,

δev
k ≡ ev

k|k−m+1 − ev
k|k−m . (9)

A schematic representation of the errors on forecast error measures is given in Fig. 1.

Substituting (3) into (1), assuming the analysis increment is small, and truncating a Taylor

9

as the change incurred due to the assimilation of observations. Assuming these changes are

infinitesimal, E7 and DT9 derive various approximations to the corresponding change in the

forecast error measure. Relevant to the present work are the following first- and second-order

accurate formulae:

δev,1
k = dT

k−m+1|k−mK̃T
k−m+1|k−m∇xbev

k|k−m , (6a)

δev,2
k =

1

2
dT

k−m+1|k−mK̃T
k−m+1|k−m

[
∇xbev

k|k−m +∇xaev
k|k−m+1

]
, (6b)

with

∇xgev
k|! = 2Mg;k,k−m+1Tk[x

f
k|! − xv

k] , (7a)

for " = k−m + 1 and " = k−m depending whether the error (5) is evaluated for a forecast

started from a background or an analysis, respectively. The n× n matrix

Mg;k,k−m+1 =
∂mk,k−m+1(x)

∂x

∣∣∣∣
x=xg

, (8)

represents the Jacobian of the model m in (1) integrated from time tk−m+1 to tk, and lin-

earized about integrations started from either the background xg = m(xb
k−m+1|k−m) or the

analysis xg = m(xa
k−m+1|k−m+1), respectively. Expression (6b) first appeared in LB4.

One can think of a change δev
k in the forecast error measure (5) as simply the difference

between the calculated measures between two forecasts issued from two consecutive analyzes,

δev
k ≡ ev

k|k−m+1 − ev
k|k−m . (9)

A schematic representation of the errors on forecast error measures is given in Fig. 1.

Substituting (3) into (1), assuming the analysis increment is small, and truncating a Taylor

9

State‐space (Adjoint) Approach  

as the change incurred due to the assimilation of observations. Assuming these changes are

infinitesimal, E7 and DT9 derive various approximations to the corresponding change in the

forecast error measure. Relevant to the present work are the following first- and second-order

accurate formulae:

δev,1
k = dT

k−m+1|k−mK̃T
k−m+1|k−m∇xbev

k|k−m , (6a)

δev,2
k =

1

2
dT

k−m+1|k−mK̃T
k−m+1|k−m

[
∇xbev

k|k−m +∇xaev
k|k−m+1

]
, (6b)

with

∇xgev
k|! = 2MT

g;k,k−m+1Tk[x
f
k|! − xv

k] , (7a)

for " = k−m + 1 and " = k−m depending whether the error (5) is evaluated for a forecast

started from a background or an analysis, respectively. The n× n matrix

Mg;k,k−m+1 =
∂mk,k−m+1(x)

∂x

∣∣∣∣
x=xg

, (8)

represents the Jacobian of the model m in (1) integrated from time tk−m+1 to tk, and lin-

earized about integrations started from either the background xg = m(xb
k−m+1|k−m) or the

analysis xg = m(xa
k−m+1|k−m+1), respectively. Expression (6b) first appeared in LB4.

One can think of a change δev
k in the forecast error measure (5) as simply the difference

between the calculated measures between two forecasts issued from two consecutive analyzes,

δev
k ≡ ev

k|k−m+1 − ev
k|k−m . (9)

A schematic representation of the errors on forecast error measures is given in Fig. 1.

Substituting (3) into (1), assuming the analysis increment is small, and truncating a Taylor

9



Limita0ons to the state‐space (adjoint) approach 

•  Prac0cal defini0on of the forecast aspect requires verifica0on 
state typically introducing what might be poten0ally 
undesirable correla0ons between residuals and forecasts 

•  Lineariza0on assump0ons constraint the technique to have 
limited applicability 

•  As used in prac0ce, it infers sta0s0cal proper0es, but lacks 
suitable probabilis0c framework  



Advantages of observa0on‐space approach 

•  Verifying against observa0ons avoids introduc0on of spurious effects in 
the forecast aspect 

•  No lineariza0on and adjoints are need and therefore method is applicable 
to any length of forecast – no issues with mul0ple loops in the analysis 
minimiza0on scheme 

•  Based on es0ma0on theory and probabilis0c approach 

•  Essen0ally cost‐free and simple to implement 

Observa0on‐space Approach  

difference between two consecutive forecasts, started at tk−m and tk−m+1, to construct the

error-change quantity
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of the nonlinear observation operator hk linearized about the background state xb
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Higher-order expression can be derived following the procedures in E7 or DT9. This ap-

proximation above is analogous to (6a) except that now the gradient vector ∇xbev
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Calcula0ng the error reduc0on requires no approxima0on: 

Following Errico (2007) or Daescu and Todling (2009) one could write down  
approxima0ons to the error reduc0on to various orders, but these are unnecessary. 



Insights on State‐ vs Observa0on‐space Approaches  
representing the expectation operator, Tr(•) stands for the trace operator, and we used the

trace property Tr(ATTB) = Tr(TBAT ) for arbitrary matrices A and B of dimension n×p.

As before, the forecast error change calculated for two consecutive forecasts

< δek > = Tr
{
Tk∆Pf

k

}
, (18)

is used to evaluate the impact of observations, where ∆Pf
k ≡ Pf

k|k−m+1 −Pf
k|k−m is the dif-

ference between the two forecast error covariances corresponding to the two lagged-forecasts.

As proposed above, the impact of observations can also be evaluated by examining

the expectation of the observation-space measure of forecast error defined on the basis of

observation-minus-forecast residuals,

< ey
k|k−m > ≡ < (dk|k−m)TCk(dk|k−m) >

= Tr
{
Ck

[
< (dk|k−m)(dk|k−m)T >

]}
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For the sake of argument, consider the linear case. 

Define the forecast error covariance difference:  

Then:  

Useful defini0ons for what follows:  

After some algebra, the difference between the two forecast error covariances defining

∆Pf
k can be shown to be

∆Pf
k = Mk,k−m+1

(
Pa

k−m+1|k−m+1 −Pf
k−m+1|k−m

)
MT

k|k−m+1 , (22)

with no assumptions made on optimality and model error. Furthermore, recall that at any

time tk, the analysis error covariance can be written as [e.g., see Cohn et al. (1994), eq.

(2.33) there],

Pa
k|k = (I−KkHk)P

f
k|k−1 + ∆Pa

k|k , (23)

where the increment matrix ∆Pa
k|k = ∆KkΓk∆KT

k incorporates all the sub-optimality in

the analysis error covariance, with ∆Kk ≡ K̃k−Kk being the difference between the general

gain matrix K̃k and the optimal Kalman gain matrix Kk,

Kk = Pf
k|k−1H

T
k Γ−1

k . (24)

From (23) it follows that,

Pa
k|k −Pf

k|k−1 = −KkΓkK
T
k + ∆Pa

k|k , (25)

is negative semi-definite in the optimal case, when ∆Pa
k|k

opt
= 0, and therefore so is the

forecast error covariance difference in (22), ∆Pf
k < 0. Applying this result at time tk−m+1

and combining it with (18) and (22) shows that in the optimal case the expected forecast

error change < δek > is guaranteed to be non-positive,

< δek >
opt
= −Tr

{
TkMk,k−m+1Kk−m+1Γk−m+1K

T
k−m+1M

T
k,k−m+1

}

opt
≤ 0 , (26)
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Observa0on‐minus‐forecast residual covariance matrix:  
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Insights on State‐ vs Observa0on‐space Approaches  

2.  For op0mal systems, and a suitable choice of weigh0ng matrix Tk, the state‐space  
       expected forecast error reduc0on produces the same es0mate as that obtained in 
       observa0on‐space.  

One can derive the following basic results: 

since the kernel inside the trace operator is positive semi-definite, with equality holding when

Tk = 0. In the optimal case, assimilation of observations is guaranteed to reduce the forecast

errors, in the expected mean sense.

Similarly, since in the optimal case ∆Pf
k < 0, the observation-space expected forecast

error change in (21) is also non-positive,

< δey
k >

opt
= −Tr

{
CkHk−m+1Mk,k−m+1Kk−m+1Γk−m+1K

T
k−m+1M

T
k,k−m+1H

T
k|k−m+1

}

< δey
k >

opt
≤ 0 , (27)

coroborating again that assimilation of observations leads to forecast error reduction, in the

expected mean sense.

A relationship between the two expected forecast error changes < δek > and < δey
k >

can be established by making a particular choice of weighting matrix Tk. Since Tk and Ck

are positive semi-definite matrices let us choose Tk = T̄k to have the following square-root

decomposition:

T1/2
k = T̄1/2

k ≡




C1/2

k Hk

Uk



 , (28)

where the matrix Uk is (n− pk)× n. Substituting this decomposition of Tk into (18),

< δek(Tk = T̄k) > = Tr
{
T̄1/2

k ∆Pf
kT̄

T/2
k

}

= Tr
{
C1/2

k Hk∆Pf
kH

T
k CT/2

k

}
+ Tr

{
Uk∆Pf

kU
T
k

}

= < δey
k > + Tr

{
Uk∆Pf

kU
T
k

}
, (29)

reveals that, in the linear case, the forecast error change calculated using an error measure

defined in state-space can be made identical to that calculated in observation space, (21),

16
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1.  For op0mal systems, the expected forecast error reduc0on always corresponds  
       to posi0ve impact – assimila0on of data always leads to improvement in the  
       expected mean sense.  

where the matrix Uk is (n− pk)× n. Substituting this decomposition of Tk into (19),

< δek(Tk = T̄k) > = Tr
{
T̄1/2

k ∆Pf
kT̄

T/2
k

}

= Tr
{
C1/2

k Hk∆Pf
kH

T
k CT/2

k

}
+ Tr

{
Uk∆Pf

kU
T
k

}

= < δey
k > + Tr

{
Uk∆Pf

kU
T
k

}
, (30)

reveals that, in the linear case, the forecast error change calculated using an error measure

defined in state-space can be made identical to that calculated in observation space, (22),

when Tk = T̄k and Uk = 0. Choosing Tk from a given weighting matrix Ck is viable.

Choosing Ck from a given weighting matrix Tk is, in general, not possible. This is simply

a consequence of the fact that Ck is rank pk, whereas Tk is rank n ≥ pk. In other words,

there is always an unexplained part of the error-change captured in state-space that is absent

when measured in observation-space.

When the weighting matrix Tk is chosen to be T̄k, to allow the state-space error measure

to capture the error measured in observation-space as in (29), optimality implies the former

to lead to errors that are always smaller than (more negative), or equal to the latter, that

is,

< δek(Tk = T̄k) >
opt
≤ < δey

k > , (31)

with equality holding when Uk = 0.

< δek(Tk = HT
k CkHk) >

opt
= < δey

k > , (32)

Tk = T̄k ≡ HT
k CkHk + UT

k Uk (33)
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Since                                                             there is only so much the measure in  
observa0on‐space can capture when compared with that in state‐space,  
however, the remaining part is not accessible to us. 
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Choosing Ck from a given weighting matrix Tk is, in general, not possible. This is simply

a consequence of the fact that Ck is rank pk, whereas Tk is rank n ≥ pk. In other words,

there is always an unexplained part of the error-change captured in state-space that is absent

when measured in observation-space.

When the weighting matrix Tk is chosen to be T̄k, to allow the state-space error measure

to capture the error measured in observation-space as in (29), optimality implies the former

to lead to errors that are always smaller than (more negative), or equal to the latter, that

is,

< δek(Tk = T̄k) >
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≤ < δey

k > , (31)

with equality holding when Uk = 0.
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= < δey
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rank(Tk) ≥ rank(Ck) (33)
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Insights on State‐ vs Observa0on‐space Approaches  

3.  In general, for subop0mal systems, verifying against a state other than the truth  
       introduces a correla0on (covariance) between the observa0on‐minus‐background  
       residual and the error in the verifica0on,   

4.  In general, for subop0mal systems, if the verifica0on is chosen to be the underlying  
       analysis all intermediate residual correla0ons (covariances) par0cipate   

where εv
k ≡ xv

k−xt
k is the error in the verification state. Furthermore, we also show that, when

the verification state is taken to be the analysis, xv
k = xa

k|k, typical in practical applications,

the expression above becomes

< δev=a
k > = < δek >

−2Tr
[
K̃T

k−m+1M
T
k,k−m+1Tk (Mk,k−m+1∆Kk−m+1Γk−m+1

+
m−2∑

j=0

Mk,k−jK̃k−j < dk−j|k−j−1d
T
k−m+1|k−m >

)]
. (33)

This relates the perceived error change, calculated using the analysis for verification, with the

actual error change. To arrive at this result one requires the typical assumption that model

errors be uncorrelated with observation errors, and that forecast errors be uncorrelated with

observation errors for all times larger than the time the forecast begins. Two terms prevent

the perceived error change < δef,v=a
k > to equal the actual error change. One is the first

term in the trace expression, involving the difference ∆Kk−m+1 between the suboptimal

and optimal gains. The other is the second term in the trace expression, involving the

cross-covariances of the various OMF residuals between the analysis time tk−m+2 and the

verification time tk. It is only in the optimal case that both these terms vanish: the first, for

obvious reasons, ∆Kk−m+1 = 0; the second, because the sequence of OMF residuals become

the sequence of innovations, which is white in time, and when all time-cross-covariances

become zero1(Kailath 1968; Daley 1992; see also Anderson and Moore 1979, section 5.3).

Therefore, in the optimal case and in the expected mean sense, verifying against the analysis

is the same as verifying against the truth when it comes to evaluating the forecast error

1Note that the cross-variances, the cross terms calculated for the same time, are not zero, but they also

do not appear inside the summation sign.
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when Tk = T̄k and Uk = 0. Choosing Tk from a given weighting matrix Ck is viable.

Choosing Ck from a given weighting matrix Tk is, in general, not possible. This is simply

a consequence of the fact that Ck is rank pk, whereas Tk is rank n ≥ pk. In other words,

there is always an unexplained part of the error-change captured in state-space that is absent

when measured in observation-space.

When the weighting matrix Tk is chosen to be T̄k, to allow the state-space error measure

to capture the error measured in observation-space as in (28), optimality implies the former

to lead to errors that are always smaller than (more negative), or equal to the latter, that

is,

< δek(Tk = T̄k) >
opt
≤ < δey

k > , (30)

with equality holding when Uk = 0.

Tk = T̄k ≡ HT
k CkHk + UT

k Uk (31)

d. The role of the verification

One can also inquire about the relationship between the change in the expected forecast

error measure defined based on the true state < δek >, and that defined with respect to a

verification state < δev
k >. Sticking with the linear, but not necessarily optimal case, we

show in appendix A that the relationship between these expected errors can be written as

< δev
k > = < δek > −2Tr

[
K̃T

k−m+1M
T
k,k−m+1Tk < εv

kd
T
k−m+1|k−m >

]
, (32)
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5.  Therefore, only in the op0mal case,  use of the verifica0on is equivalent to use of 
       the unknown true state to obtain the expected error change of interest.  



Experimental Setup 

•  Test‐bed: GEOS‐5 DAS 2x2.5x72 
•  Observa0on impact on all 24‐hr forecasts from 00UTC 
for August 2007 

•  Broad LPO, excluding only very top layers of model 
•  What follows: 

1.  Quick test for the role of the verifica0on 
2.  Compares the state‐space (adjoint) approach for 

three different norms 
3.  Compares results from observa0on‐space 

approach to what’s obtained in (2) 



The Role of the Verifica0on 
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The role of the verifica0on can precisely tested in observa0on‐space. Similarly, to the  
result obtained in state‐space, when the verifica0on is chosen to be the analysis, now 
projected onto observa0on space, the following holds: 

The result with GEOS‐5 DAS indicates that in the light of this global measure, the  
system is nearly op0mal, and using the analysis as a proxy for the observa0ons is  
reasonable most of the 0me. Indeed, this provides a test of op0mality. 

term in the trace expression, involving the difference ∆Kk−m+1 between the suboptimal

and optimal gains. The other is the second term in the trace expression, involving the

cross-covariances of the various OMF residuals between the analysis time tk−m+2 and the

verification time tk. It is only in the optimal case that both these terms vanish: the first, for

obvious reasons, ∆Kk−m+1 = 0; the second, because the sequence of OMF residuals become

the sequence of innovations, which is white in time, and when all time-cross-covariances

become zero1(Kailath 1968; Daley 1992; see also Anderson and Moore 1979, section 5.3).

Therefore, in the optimal case and in the expected mean sense, verifying against the analysis

is the same as verifying against the truth when it comes to evaluating the forecast error

change under consideration.

< δey=a
k > = < δey

k > −2Tr
[
K̃T

k−m+1M
T
k,k−m+1H

T
k CkHk < εv=a

k dT
k−m+1|k−m >

]
(37)

< δey
k > ≈ < δey,1

k >

= < δev,1
k > −2Tr

[
K̃T

k−m+1M
T
k,k−m+1H

T
k CkHk < εo

kd
T
k−m+1|k−m >

]
(38)

TBD: I have seen from calculating < δey > and a similar quantity using the analysis

for verification, that there is strong indication the cross-covariance term mentioned above

is indeed negligible - therefore, I should be able to show that the estimates I get with the

1Note that the cross-variances, the cross terms calculated for the same time, are not zero, but they also

do not appear inside the summation sign.
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State‐space vs Observa0on‐space Error Reduc0on 
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term in the trace expression, involving the difference ∆Kk−m+1 between the suboptimal

and optimal gains. The other is the second term in the trace expression, involving the

cross-covariances of the various OMF residuals between the analysis time tk−m+2 and the

verification time tk. It is only in the optimal case that both these terms vanish: the first, for

obvious reasons, ∆Kk−m+1 = 0; the second, because the sequence of OMF residuals become

the sequence of innovations, which is white in time, and when all time-cross-covariances

become zero1(Kailath 1968; Daley 1992; see also Anderson and Moore 1979, section 5.3).

Therefore, in the optimal case and in the expected mean sense, verifying against the analysis

is the same as verifying against the truth when it comes to evaluating the forecast error
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T
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TBD: I have seen from calculating < δey > and a similar quantity using the analysis

for verification, that there is strong indication the cross-covariance term mentioned above

is indeed negligible - therefore, I should be able to show that the estimates I get with the

1Note that the cross-variances, the cross terms calculated for the same time, are not zero, but they also

do not appear inside the summation sign.
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When the state‐space measure is designed to capture what the observa0on‐space 
measure captures it reveals the correla0ons between the observa0on errors and the 
OMB‐residuals.    



The background error covariance is implemented as a series of recursive filters producing

nearly Gaussian and isotropic correlation functions (Wu et al 2002). Satellite radiances are

processed using the Community Radiative Transfer Model (CRTM; Kleespies et al. 2004)

and the online bias-correction procedure of Derber and Wu (1998). Furthermore, the version

of GSI used in the experiments here includes the adjoint capability of Trémolet (2007, 2008).

This adjoint differs from its previous incarnation due to Zhu and Gelaro (2008) in that

it is not a line-by-line adjoint, but rather it is derived from a swap of operations used in

the forward GSI. Combining the GSI adjoint with the GCM adjoint, GEOS-5 has all the

ingredients necessary to calculate the adjoint-based approximations of observation impacts

discussed earlier.

To illustrate the role played by the choice of weight matrices in the forecast error measures

of the previous section, we consider two choices of norms when using the adjoint-based

approach. Following Errico et al. (2007), the dot product between two perturbation vectors,

x1 and x2, involving perturbations in the zonal and meridional components of the wind,

temperature, and surface pressure, is calculated using either one of the following expressions:
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∆Hi,j∆σi,j,k

[
u′

1u
′
2 + v′

1v
′
2 +

cp

Tr
T ′

1T
′
2 +

RTr

p2
r

p′
s1p

′
s2

]

i,j,k

, (32a)

es ≡ xT
1 Tsx2 = 1

2

∑

i,j,k

∆Hi,j∆zi,j,k

[
u′

1u
′
2 + v′

1v
′
2 +

cp

Tr
T ′

1T
′
2 +

RTr

p2
r

p′
s1p

′
s2

]

i,j,k
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where ∆Hi,j is a horizontal grid-box weight and the distinction between the two norms is in

how they weight the fields in the vertical, with ∆σi,j,k and ∆zi,jk being fractional weights,
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respectively, defined as:

∆σi,j,k =
∆pi,j,k

ps ,i,j − pt
, (33a)

∆zi,j,k =
∆ ln pi,j,k

ln ps ,i,j − ln pt
. (33b)

For consistency with Errico et al. (2007), we refer to (32a) and (32b) as the E-norm and

V-norm, respectively. The physical scaling coefficients cp = 1004.6 J kg−1 K−1, R = 287.04

J kg−1 K −1, Tr = 200 K, and pr = 1000 hPa, are the specific heat at constant pressure, the

gas constant of dry air, and a reference temperature and pressure. Detailed discussions of

the applicability of these two flavors of the total energy norm appear in Lewis et al. (2001)

and in Errico et al. (2007). Here, we simply notice that the energy in perturbations in the

troposphere are emphasized when the fractional mass weights in (33a) are used; whereas the

energy of perturbations mainly concentrated in the stratosphere are emphasized when the

fractional distance weights in (33b) are used instead. This is illustrated in Fig. 1 where the

weights in (33) are displayed as a function of the 72 vertical levels of GEOS-5 for a point

where ps = 1000 hPa. The thin curve is for the fractional mass weight (33a), and the thick

curve is for the fractional distance weight (33b). In the former, the weights have a stepwise

increase in the troposphere up to 300 hPa, above which level they decrease rapidly. The

opposite happens in case of the latter fractional weights, where they are comparatively small

in the troposphere and increase rapidly in the stratosphere and mesosphere.

The works of LB4, E7, GZE7, and DT9 all use the E-norm to calculate observation

impacts. Moreover, as mentioned in the introduction, these works also use a projection

operator that is unit for all grid points roughly below 100 hPa, and zero above that. We

have compared adjoint-based observation impacts using the E-norm with and without this
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For consistency with Errico et al. (2007), we refer to (32a) and (32b) as the E-norm and

V-norm, respectively. The physical scaling coefficients cp = 1004.6 J kg−1 K−1, R = 287.04

J kg−1 K −1, Tr = 200 K, and pr = 1000 hPa, are the specific heat at constant pressure, the

gas constant of dry air, and a reference temperature and pressure. Detailed discussions of

the applicability of these two flavors of the total energy norm appear in Lewis et al. (2001)

and in Errico et al. (2007). Here, we simply notice that the energy in perturbations in the

troposphere are emphasized when the fractional mass weights in (33a) are used; whereas the

energy of perturbations mainly concentrated in the stratosphere are emphasized when the

fractional distance weights in (33b) are used instead. This is illustrated in Fig. 1 where the

weights in (33) are displayed as a function of the 72 vertical levels of GEOS-5 for a point

where ps = 1000 hPa. The thin curve is for the fractional mass weight (33a), and the thick

curve is for the fractional distance weight (33b). In the former, the weights have a stepwise

increase in the troposphere up to 300 hPa, above which level they decrease rapidly. The

opposite happens in case of the latter fractional weights, where they are comparatively small

in the troposphere and increase rapidly in the stratosphere and mesosphere.

The works of LB4, E7, GZE7, and DT9 all use the E-norm to calculate observation

impacts. Moreover, as mentioned in the introduction, these works also use a projection

operator that is unit for all grid points roughly below 100 hPa, and zero above that. We
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difference between two consecutive forecasts, started at tk−m and tk−m+1, to construct the

error-change quantity

δey
k ≡ ey

k|k−m+1 − ey
k|k−m . (13)

The impact, or error-change, δey
k is a scalar obtained from the summation over the contri-

butions of all individual observations and can be broken down into individual contributions,

just as the error-changes in (6). The difference between (6) and (13) being that the latter is

not an approximation obtained to allow for the calculation of individual observation impacts.

A relationship between the error-changes (6) and (13) can easily be established. If one

expands the forecast error vectors in (12) following similar arguments to those used to derive

(11), the OMF residual-based forecast error-change (13) can be approximated to first-order

as

δey
k ≈ δey,1

k = −2dT
k−m+1|k−mK̃T

k−m+1|k−m∇xbey
k|k−m

δey
k ≈ δey,2

k = −1

2
dT

k−m+1|k−mK̃T
k−m+1|k−m

[
∇xbey

k|k−m +∇xaey
k|k−m+1

]
, (14)

where, in the last expression, δxk−m+1|k−m = K̃k−m+1|k−mdk−m+1|k−m is the analysis incre-

ment at time tk−m+1, the gradients are calculated as

∇xgey
k|! = −2MT

g;k,k−m+1H
T
k|!Ckdk|! , (15a)

and Hk|k−m is the pk × n Jacobian matrix

Hk|k−m =
∂hk(x)

∂x

∣∣∣∣
x=xb

, (16)

of the nonlinear observation operator hk linearized about the background state xb
k−m+1|k−m.

Higher-order expression can be derived following the procedures in E7 or DT9. This ap-
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The observation impact studies of LB4, GZE7, and DT9 use for Tk a diagonal matrix

that corresponds to the finite-difference of a linearized version of the total energy (in the later

two cases, of the dry total energy). Here, we choose Ck to be the inverse of the observation

error covariance matrix,

Ck = R−1
k . (36)

In our point of view this choice is in sync with the statistical interpretation of the forecast

error measure, i.e., the weighting matrix should be an error covariance of some sort.

3. Illustrative results

In this section we present results from a brief comparison of observation impacts ob-

tained using the adjoint-based approach with those obtained using the OMF residual-based

approach. The fifth generation Goddard Earth Observing System Data Assimilation System

(GEOS-5; Rienecker et al. 2008) is used for this purpose. GEOS-5 assimilates observations

using the incremental analysis update technique of Bloom et al. (1996). It consists of a global

atmospheric model developed at Goddard and an analysis system developed jointly by the

NOAA National Centers for Environmental Prediction (NCEP) and the NASA Global Mod-

eling and Assimilation Office (GMAO). The GEOS-5 GCM retains an updated version of

the finite-volume hydrostatic dynamical core (Lin 2004) from its predecessor GEOS-4. The

GEOS-5 GCM is built under the infrastructure of the Earth System Modeling Framework

(Collins et al. 2005) used to couple together various physics packages including a modified
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Limita0ons of observa0on‐space approach 

•  Observa0on‐space measures only capture a part of the forecast error – 
that part projec0ng on the space of observa0ons – unfortunately, this is 
only part accessible to us. 

•  In prac0ce, since observa0ons are bias‐corrected, there is s0ll a correla0on 
in the forecast aspect between the forecast and the verifica0on (i.e., bias‐
corrected observa0ons in this case). 

•  The observing system is assumed to be rela0vely homogenous in 0me. 

Conclusions 
•  A fair assessment of the observing system impact on the forecast requires 

careful choice of a forecast error measure. 
•  Impacts derived from the sequence of observa0on‐minus‐forecast residuals 

provide similar informa0on to that obtained with adjoint‐based techniques 
with considerably less restric0ons and complexity. 

“I like the dreams of the future be>er than the history of the past.” 
                                                                                    ‐ Thomas Jefferson 


